How do we specify glass railings?

Glass design and engineering analysis can be inconsistent across projects. There are several possible reasons for this including the treatment of guardrails as a product rather than an engineered structure, general inexperience with glass as an engineered material, and limited access to glass design software in the U.S.

To ensure you have all the pertinent details, ask suppliers to provide you with a comprehensive proposal, including detailed takeoffs with specific inclusions or exclusions for each railing style within the project scope. These details should include aspects such as finish, linear footage, structural attachment, and makeup. Additionally, request a submittal package that includes 3D renderings based on the architectural and structural specifics for the project.

High-definition surveying (HDS) technology offers tremendous benefits over conventional surveying. It allows for the capture of thousands of critical measurements with precision accuracy, thereby significantly reducing the need for fabrication rework. It also offers a much faster track to the manufacturing process by eliminating the risk of human error and saving weeks of manual field measuring.

Regardless of the method selected for analysis, there are two key principles that should be considered when specifying glass railing: the elastic properties of laminate interlayers (and how they change with temperature and load duration), and understanding that local stresses—e.g., contact materials, support size, and hole size—are critical. In light of these varying factors, it’s recommended that a good finite element program be used to accurately determine glass stresses instead of any manual analysis.

Glass analysis is the most critical aspect of specifying point-supported glass due to life-safety factors. It’s essential that those who have a stake in a project understand this and take appropriate measures to ensure that building code requirements are met.

This article originally appeared in the College Planning & Management June 2019 issue of Spaces4Learning.

About the Author

Dan Stachel is vice president of Trex Commercial Products (www.trexcommercial.com).

Featured

  • Minnesota District Completes Major Renovations, Expansions to High School

    White Bear Lake Area Schools in White Bear Lake, Minn., recently announced that it has completed the renovation and expansion of White Bear Lake Area High School, according to a news release. The school’s final addition, a new 845-seat Performing Arts Center, was finished in November.

  • Illinois Elementary School Breaks Ground on Campus Expansion

    Heather Hill Elementary School, part of Flossmoor School District 161 in Palatine, Ill., recently broke ground on a new addition to the school focused on student support and security, according to a news release. The district partnered with Wold Architects & Engineers for the expansion as part of a longer-term facility planning and modernization initiative.

  • DreamBox Math

    Discovery Education Debuts Enhancements to DreamBox Math

    Discovery Education recently announced that DreamBox Math, an online math program for K–8 students to supplement core instruction, has been updated to improve accessibility for K–5 students, according to a news release. DreamBox Math provides personalized instruction by adapting to individual learners’ responses and providing an engaging, dynamic learning environment.

  • Florida Elementary School to Undergo $47M Reconstruction

    The School District of Osceola County in Kissimmee, Fla., recently announced a partnership with construction firm Skanska to reconstruct Reedy Creek Elementary School, according to a news release. The $47-million project will involve the new construction of a 96,000-square-foot academic center, renovating the remaining facilities, a full-site redevelopment, and demolishing portions of the existing school.